Serveur d'exploration sur la Covid et les espaces publics

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Estimating COVID-19 outbreak risk through air travel.

Identifieur interne : 000164 ( Main/Exploration ); précédent : 000163; suivant : 000165

Estimating COVID-19 outbreak risk through air travel.

Auteurs : Yair Daon [Israël] ; Robin N. Thompson [Royaume-Uni] ; Uri Obolski [Israël]

Source :

RBID : pubmed:32502274

Descripteurs français

English descriptors

Abstract

BACKGROUND

Substantial limitations have been imposed on passenger air travel to reduce transmission of severe acute respiratory syndrome coronavirus 2 between regions and countries. However, as case numbers decrease, air travel will gradually resume. We considered a future scenario in which case numbers are low and air travel returns to normal. Under that scenario, there will be a risk of outbreaks in locations worldwide due to imported cases. We estimated the risk of different locations acting as sources of future coronavirus disease 2019 outbreaks elsewhere.

METHODS

We use modelled global air travel data and population density estimates from locations worldwide to analyse the risk that 1364 airports are sources of future coronavirus disease 2019 outbreaks. We use a probabilistic, branching-process-based approach that considers the volume of air travelers between airports and the reproduction number at each location, accounting for local population density.

RESULTS

Under the scenario we model, we identify airports in East Asia as having the highest risk of acting as sources of future outbreaks. Moreover, we investigate the locations most likely to cause outbreaks due to air travel in regions that are large and potentially vulnerable to outbreaks: India, Brazil and Africa. We find that outbreaks in India and Brazil are most likely to be seeded by individuals travelling from within those regions. We find that this is also true for less vulnerable regions, such as the United States, Europe and China. However, outbreaks in Africa due to imported cases are instead most likely to be initiated by passengers travelling from outside the continent.

CONCLUSIONS

Variation in flight volumes and destination population densities creates a non-uniform distribution of the risk that different airports pose of acting as the source of an outbreak. Accurate quantification of the spatial distribution of outbreak risk can therefore facilitate optimal allocation of resources for effective targeting of public health interventions.


DOI: 10.1093/jtm/taaa093
PubMed: 32502274
PubMed Central: PMC7313812


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Estimating COVID-19 outbreak risk through air travel.</title>
<author>
<name sortKey="Daon, Yair" sort="Daon, Yair" uniqKey="Daon Y" first="Yair" last="Daon">Yair Daon</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Public Health, Tel Aviv University, Tel Aviv, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>School of Public Health, Tel Aviv University, Tel Aviv</wicri:regionArea>
<wicri:noRegion>Tel Aviv</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv</wicri:regionArea>
<wicri:noRegion>Tel Aviv</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Thompson, Robin N" sort="Thompson, Robin N" uniqKey="Thompson R" first="Robin N" last="Thompson">Robin N. Thompson</name>
<affiliation wicri:level="4">
<nlm:affiliation>Mathematical Institute, University of Oxford, Oxford, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Mathematical Institute, University of Oxford, Oxford</wicri:regionArea>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="country">Angleterre</region>
<region type="comté" nuts="2">Oxfordshire</region>
</placeName>
<orgName type="university">Université d'Oxford</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Christ Church, University of Oxford, Oxford, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Christ Church, University of Oxford, Oxford</wicri:regionArea>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="country">Angleterre</region>
<region type="comté" nuts="2">Oxfordshire</region>
</placeName>
<orgName type="university">Université d'Oxford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Obolski, Uri" sort="Obolski, Uri" uniqKey="Obolski U" first="Uri" last="Obolski">Uri Obolski</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Public Health, Tel Aviv University, Tel Aviv, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>School of Public Health, Tel Aviv University, Tel Aviv</wicri:regionArea>
<wicri:noRegion>Tel Aviv</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv</wicri:regionArea>
<wicri:noRegion>Tel Aviv</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32502274</idno>
<idno type="pmid">32502274</idno>
<idno type="doi">10.1093/jtm/taaa093</idno>
<idno type="pmc">PMC7313812</idno>
<idno type="wicri:Area/Main/Corpus">000204</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000204</idno>
<idno type="wicri:Area/Main/Curation">000204</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000204</idno>
<idno type="wicri:Area/Main/Exploration">000204</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Estimating COVID-19 outbreak risk through air travel.</title>
<author>
<name sortKey="Daon, Yair" sort="Daon, Yair" uniqKey="Daon Y" first="Yair" last="Daon">Yair Daon</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Public Health, Tel Aviv University, Tel Aviv, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>School of Public Health, Tel Aviv University, Tel Aviv</wicri:regionArea>
<wicri:noRegion>Tel Aviv</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv</wicri:regionArea>
<wicri:noRegion>Tel Aviv</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Thompson, Robin N" sort="Thompson, Robin N" uniqKey="Thompson R" first="Robin N" last="Thompson">Robin N. Thompson</name>
<affiliation wicri:level="4">
<nlm:affiliation>Mathematical Institute, University of Oxford, Oxford, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Mathematical Institute, University of Oxford, Oxford</wicri:regionArea>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="country">Angleterre</region>
<region type="comté" nuts="2">Oxfordshire</region>
</placeName>
<orgName type="university">Université d'Oxford</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Christ Church, University of Oxford, Oxford, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Christ Church, University of Oxford, Oxford</wicri:regionArea>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="country">Angleterre</region>
<region type="comté" nuts="2">Oxfordshire</region>
</placeName>
<orgName type="university">Université d'Oxford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Obolski, Uri" sort="Obolski, Uri" uniqKey="Obolski U" first="Uri" last="Obolski">Uri Obolski</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Public Health, Tel Aviv University, Tel Aviv, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>School of Public Health, Tel Aviv University, Tel Aviv</wicri:regionArea>
<wicri:noRegion>Tel Aviv</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv</wicri:regionArea>
<wicri:noRegion>Tel Aviv</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of travel medicine</title>
<idno type="eISSN">1708-8305</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Africa (epidemiology)</term>
<term>Air Travel (MeSH)</term>
<term>Airports (MeSH)</term>
<term>Betacoronavirus (MeSH)</term>
<term>COVID-19 (MeSH)</term>
<term>China (epidemiology)</term>
<term>Communicable Diseases, Imported (MeSH)</term>
<term>Coronavirus Infections (diagnosis)</term>
<term>Coronavirus Infections (epidemiology)</term>
<term>Coronavirus Infections (transmission)</term>
<term>Europe (epidemiology)</term>
<term>Global Health (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Pandemics (MeSH)</term>
<term>Pneumonia, Viral (diagnosis)</term>
<term>Pneumonia, Viral (epidemiology)</term>
<term>Pneumonia, Viral (transmission)</term>
<term>Population Surveillance (MeSH)</term>
<term>Risk Assessment (MeSH)</term>
<term>SARS-CoV-2 (MeSH)</term>
<term>South America (epidemiology)</term>
<term>Travel Medicine (MeSH)</term>
<term>United States (epidemiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Afrique (épidémiologie)</term>
<term>Amérique du Sud (épidémiologie)</term>
<term>Appréciation des risques (MeSH)</term>
<term>Aéroports (MeSH)</term>
<term>Betacoronavirus (MeSH)</term>
<term>Chine (épidémiologie)</term>
<term>Europe (épidémiologie)</term>
<term>Humains (MeSH)</term>
<term>Infections à coronavirus (diagnostic)</term>
<term>Infections à coronavirus (transmission)</term>
<term>Infections à coronavirus (épidémiologie)</term>
<term>Maladies transmissibles importées (MeSH)</term>
<term>Médecine des voyages (MeSH)</term>
<term>Pandémies (MeSH)</term>
<term>Pneumopathie virale (diagnostic)</term>
<term>Pneumopathie virale (transmission)</term>
<term>Pneumopathie virale (épidémiologie)</term>
<term>Santé mondiale (MeSH)</term>
<term>Surveillance de la population (MeSH)</term>
<term>Voyage aérien (MeSH)</term>
<term>États-Unis (épidémiologie)</term>
</keywords>
<keywords scheme="MESH" type="geographic" qualifier="epidemiology" xml:lang="en">
<term>Africa</term>
<term>China</term>
<term>Europe</term>
<term>South America</term>
<term>United States</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnosis" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnostic" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Pneumopathie virale</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Afrique</term>
<term>Amérique du Sud</term>
<term>Chine</term>
<term>Europe</term>
<term>Infections à coronavirus</term>
<term>Pneumopathie virale</term>
<term>États-Unis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Air Travel</term>
<term>Airports</term>
<term>Betacoronavirus</term>
<term>COVID-19</term>
<term>Communicable Diseases, Imported</term>
<term>Global Health</term>
<term>Humans</term>
<term>Pandemics</term>
<term>Population Surveillance</term>
<term>Risk Assessment</term>
<term>SARS-CoV-2</term>
<term>Travel Medicine</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Appréciation des risques</term>
<term>Aéroports</term>
<term>Betacoronavirus</term>
<term>Humains</term>
<term>Maladies transmissibles importées</term>
<term>Médecine des voyages</term>
<term>Pandémies</term>
<term>Santé mondiale</term>
<term>Surveillance de la population</term>
<term>Voyage aérien</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>République populaire de Chine</term>
<term>États-Unis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Substantial limitations have been imposed on passenger air travel to reduce transmission of severe acute respiratory syndrome coronavirus 2 between regions and countries. However, as case numbers decrease, air travel will gradually resume. We considered a future scenario in which case numbers are low and air travel returns to normal. Under that scenario, there will be a risk of outbreaks in locations worldwide due to imported cases. We estimated the risk of different locations acting as sources of future coronavirus disease 2019 outbreaks elsewhere.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>We use modelled global air travel data and population density estimates from locations worldwide to analyse the risk that 1364 airports are sources of future coronavirus disease 2019 outbreaks. We use a probabilistic, branching-process-based approach that considers the volume of air travelers between airports and the reproduction number at each location, accounting for local population density.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Under the scenario we model, we identify airports in East Asia as having the highest risk of acting as sources of future outbreaks. Moreover, we investigate the locations most likely to cause outbreaks due to air travel in regions that are large and potentially vulnerable to outbreaks: India, Brazil and Africa. We find that outbreaks in India and Brazil are most likely to be seeded by individuals travelling from within those regions. We find that this is also true for less vulnerable regions, such as the United States, Europe and China. However, outbreaks in Africa due to imported cases are instead most likely to be initiated by passengers travelling from outside the continent.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Variation in flight volumes and destination population densities creates a non-uniform distribution of the risk that different airports pose of acting as the source of an outbreak. Accurate quantification of the spatial distribution of outbreak risk can therefore facilitate optimal allocation of resources for effective targeting of public health interventions.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32502274</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>09</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1708-8305</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>27</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2020</Year>
<Month>Aug</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>Journal of travel medicine</Title>
<ISOAbbreviation>J Travel Med</ISOAbbreviation>
</Journal>
<ArticleTitle>Estimating COVID-19 outbreak risk through air travel.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">taaa093</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jtm/taaa093</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Substantial limitations have been imposed on passenger air travel to reduce transmission of severe acute respiratory syndrome coronavirus 2 between regions and countries. However, as case numbers decrease, air travel will gradually resume. We considered a future scenario in which case numbers are low and air travel returns to normal. Under that scenario, there will be a risk of outbreaks in locations worldwide due to imported cases. We estimated the risk of different locations acting as sources of future coronavirus disease 2019 outbreaks elsewhere.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">We use modelled global air travel data and population density estimates from locations worldwide to analyse the risk that 1364 airports are sources of future coronavirus disease 2019 outbreaks. We use a probabilistic, branching-process-based approach that considers the volume of air travelers between airports and the reproduction number at each location, accounting for local population density.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Under the scenario we model, we identify airports in East Asia as having the highest risk of acting as sources of future outbreaks. Moreover, we investigate the locations most likely to cause outbreaks due to air travel in regions that are large and potentially vulnerable to outbreaks: India, Brazil and Africa. We find that outbreaks in India and Brazil are most likely to be seeded by individuals travelling from within those regions. We find that this is also true for less vulnerable regions, such as the United States, Europe and China. However, outbreaks in Africa due to imported cases are instead most likely to be initiated by passengers travelling from outside the continent.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Variation in flight volumes and destination population densities creates a non-uniform distribution of the risk that different airports pose of acting as the source of an outbreak. Accurate quantification of the spatial distribution of outbreak risk can therefore facilitate optimal allocation of resources for effective targeting of public health interventions.</AbstractText>
<CopyrightInformation>© International Society of Travel Medicine 2020. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Daon</LastName>
<ForeName>Yair</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>School of Public Health, Tel Aviv University, Tel Aviv, Israel.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thompson</LastName>
<ForeName>Robin N</ForeName>
<Initials>RN</Initials>
<AffiliationInfo>
<Affiliation>Mathematical Institute, University of Oxford, Oxford, UK.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Christ Church, University of Oxford, Oxford, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Obolski</LastName>
<ForeName>Uri</ForeName>
<Initials>U</Initials>
<AffiliationInfo>
<Affiliation>School of Public Health, Tel Aviv University, Tel Aviv, Israel.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Travel Med</MedlineTA>
<NlmUniqueID>9434456</NlmUniqueID>
<ISSNLinking>1195-1982</ISSNLinking>
</MedlineJournalInfo>
<SupplMeshList>
<SupplMeshName Type="Disease" UI="C000657245">COVID-19</SupplMeshName>
<SupplMeshName Type="Organism" UI="C000656484">severe acute respiratory syndrome coronavirus 2</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000349" MajorTopicYN="N" Type="Geographic">Africa</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064870" MajorTopicYN="Y">Air Travel</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059028" MajorTopicYN="N">Airports</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073640" MajorTopicYN="N">Betacoronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002681" MajorTopicYN="N" Type="Geographic">China</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076263" MajorTopicYN="N">Communicable Diseases, Imported</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="Y">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005060" MajorTopicYN="N" Type="Geographic">Europe</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014943" MajorTopicYN="N">Global Health</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="N">Pandemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011024" MajorTopicYN="N">Pneumonia, Viral</DescriptorName>
<QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="Y">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011159" MajorTopicYN="N">Population Surveillance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018570" MajorTopicYN="Y">Risk Assessment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013020" MajorTopicYN="N" Type="Geographic">South America</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057236" MajorTopicYN="N">Travel Medicine</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014481" MajorTopicYN="N" Type="Geographic">United States</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Fragile States Index</Keyword>
<Keyword MajorTopicYN="N">Mathematical model</Keyword>
<Keyword MajorTopicYN="N">branching process</Keyword>
<Keyword MajorTopicYN="N">imported cases</Keyword>
<Keyword MajorTopicYN="N">infectious disease</Keyword>
<Keyword MajorTopicYN="N">outbreak resurgence</Keyword>
<Keyword MajorTopicYN="N">policy changes</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>05</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>6</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>6</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32502274</ArticleId>
<ArticleId IdType="pii">5851816</ArticleId>
<ArticleId IdType="doi">10.1093/jtm/taaa093</ArticleId>
<ArticleId IdType="pmc">PMC7313812</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Israël</li>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Oxfordshire</li>
</region>
<settlement>
<li>Oxford</li>
</settlement>
<orgName>
<li>Université d'Oxford</li>
</orgName>
</list>
<tree>
<country name="Israël">
<noRegion>
<name sortKey="Daon, Yair" sort="Daon, Yair" uniqKey="Daon Y" first="Yair" last="Daon">Yair Daon</name>
</noRegion>
<name sortKey="Daon, Yair" sort="Daon, Yair" uniqKey="Daon Y" first="Yair" last="Daon">Yair Daon</name>
<name sortKey="Obolski, Uri" sort="Obolski, Uri" uniqKey="Obolski U" first="Uri" last="Obolski">Uri Obolski</name>
<name sortKey="Obolski, Uri" sort="Obolski, Uri" uniqKey="Obolski U" first="Uri" last="Obolski">Uri Obolski</name>
</country>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Thompson, Robin N" sort="Thompson, Robin N" uniqKey="Thompson R" first="Robin N" last="Thompson">Robin N. Thompson</name>
</region>
<name sortKey="Thompson, Robin N" sort="Thompson, Robin N" uniqKey="Thompson R" first="Robin N" last="Thompson">Robin N. Thompson</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Wicri/explor/CovidPublicV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000164 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000164 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Wicri
   |area=    CovidPublicV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32502274
   |texte=   Estimating COVID-19 outbreak risk through air travel.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32502274" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidPublicV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Dec 15 17:23:28 2020. Site generation: Wed Jan 27 15:07:40 2021